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Abstract

The vibration behavior of a piezoelectric composite plate with cracks is analyzed in this paper. Based on the principle of min-

imum energy, a dynamical model is established, and the effects of cracks and piezoelectric materials on mode shapes are analyzed.

Numerical simulations for a rectangular aluminum plate with and without cracks are conducted to validate the model. The contours

of the displacement and strain mode shapes are compared. It is shown that the strain mode is more sensitive to cracks rather than the

displacement mode. The approach is expected to detect damages of piezoelectric composite plates.

� 2004 Published by Elsevier Ltd.
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1. Introduction

The piezoelectric composite plates have extensively

been used in engineering due to the high strength and

stiffness, corrosion resistance and low cost of piezoelec-

tric materials. In general, the piezoelectric materials may

be distributed piecewise on the structural surface or oc-

cupy a whole layer. In the latter case, the host plate and

the piezoelectric layer form a composite multi-layer lam-
inate. However, this kind of structure is easily subjected

to damage (e.g., cracks or delaminations) under load-

ings, such as the transverse time-varying loading, which

reduces the structural safety, reliability and operational

life [1–4]. Usually, the appearance of cracks changes the

structural dynamic characteristics (natural frequencies

and mode shapes) [5,6]. For example, Yuen [7] and

Ratcliffe [8] discussed the sensitivity of displacement
mode shapes and strain/curvature mode shapes to dam-

age for a beam. Li et al. [9] presented a numerical model

of a damaged plate with piezoelectric actuation based on
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variational methods, and verified its validity using
indices related to frequency variation and energy change

in both frequency and time domains. The sensitivity of

static and dynamic parameters to damage occurring in

plate-like structures was systematically investigated by

Yam et al. [10]. These studies have covered many impor-

tant aspects of physics associated with the modeling and

damage detection of plate-like structures. However, as

far as the piezoelectric composite laminates are con-
cerned, few results have been reported so far, especially

for structures with multi-cracks. In such case, it is of

interest to investigate how the modeling and dynamic

characteristics of piezoelectric composite plates are

affected by the cracks.

This paper attempts to answer these questions and to

potentially provide an effective approach to determine

the existence of damage. The paper is organized as fol-
lows. Section 2 addresses the modeling approach. By

using the principle of minimum energy, the modeling

of a rectangular composite plate with a defect is per-

formed. In Section 3, numerical simulations are studied.

The effects of cracks on natural frequencies and dis-

placement/strain mode shapes of a piezoelectric plate

with different boundary conditions are considered.
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Comparison between existing results and the numerical

solutions presented showed excellent agreement. Finally,

some conclusions are drawn.
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Fig. 1. Schematic diagram of a piezoelectric plate with cracks.
2. An analytical model of a piezoelectric composite
plate with cracks

The configuration under investigation is a rectangular

plate (a · b · hp) with perfect bonded piezoelectric

patches Xpe‘
:{xpe‘1 6 x 6 xpe‘2, ype‘1 6 y 6 ype‘2, ‘ = 1,

. . . , r} on both surfaces of the plate, which are symmet-

rical to the mid-plane of the structure (see Fig. 1). The

ith crack in the structure is simulated by a small defec-
tive area Xdi:[xdi1 xdi2] · [ydi1 ydi2] (i = 1, . . . , s) with a

reduction of thickness hdi to ensure the linear strain

distribution along with the thickness and zero transverse

shear stress. According to the classical laminated theory,

the constitutive relation of the structure is expressed as

frg ¼ ½S�feg, ð1aÞ
where {r} and {e} are the stress vector and the strain

vector, respectively, and

feg ¼
ex þ zjx

ey þ zjy

exy þ zjxy

8><
>:

9>=
>;, frg ¼

rx

ry

rxy

8><
>:

9>=
>;, ð1bÞ

ex ¼
ou
ox

, ey ¼
om
oy

, exy ¼
ou
oy

þ om
ox

, jx ¼ � o2w
ox2

,

jy ¼ � o2w
oy2

, jxy ¼ � 2o2w
oxoy

: ð1cÞ
Nx ¼
Ephðx; yÞ
1� m2p

ðex þ mpeyÞ þ
Xr
‘¼1

Epe‘

1� mpe‘
� 2t
1þ mpe‘

ðex þ mpe‘eyÞv

Ny ¼
Ephðx; yÞ
1� m2p

ðey þ mpexÞ þ
Xr
‘¼1

Epe‘

1� mpe‘
� 2t
1þ mpe‘

ðey þ mpe‘exÞv

Nxy ¼
Ephðx,yÞ
2ð1þ mpÞ

þ
Xr
‘¼1

Epe‘ t
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" #

exy

Mx ¼
Ephðx; yÞ3

12ð1� m2pÞ
ðjx þ mpjyÞ þ

Xr
‘¼1

Epe‘

1� mpe‘
� 2l1ðjx þ mpe‘jyÞ

3ð1þ mpe‘Þ
vp

My ¼
Ephðx; yÞ3

12ð1� m2pÞ
ðjy þ mpjxÞ þ

Xr
‘¼1

Epe‘

1� mpe‘
� 2l1ðjy þ mpe‘jxÞ

3ð1þ mpe‘Þ
vp

Mxy ¼
Ephðx; yÞ3

24ð1þ mpÞ
þ
Xr
‘¼1

Epe‘l1
3ð1þ mpe‘Þ

� vpe‘ðx; yÞ
" #

jxy
u, m and w denote the mid-plane displacements either on

the plate or on the piezoelectric elements. [S] is the elas-

tic stiffness matrix and

½S�k ¼
Ek

1� m2k

1 mk 0

mk 1 0

0 0 ð1�mkÞ
2

2
64

3
75,

k ¼ p ðplateÞ, pe ðpiezoelectric materialÞ, ð2Þ

where Ek and mk are the Young�s modulus and Poisson�s
ratio, respectively. In light of the stress resultants

Nx Mx

Ny My

Nxy Mxy

2
64

3
75 ¼

Z rx

ry

rxy

8><
>:

9>=
>;ð1,zÞdz, ð3Þ

the resultants of forces and moments in the presence of

piezoelectric patches are determined as
pe‘
ðx; yÞ

pe‘
ðx; yÞ

9>>>>>>>>>=
>>>>>>>>>;

ð4Þ
and
e‘
ðx; yÞ

e‘
ðx; yÞ

9>>>>>>>>>>=
>>>>>>>>>>;
, ð5Þ
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where h(x,y) is the thickness of the damaged plate and

h(x,y) = hp�hdivdi(x,y), while t the thickness of the pie-

zoelectric patch; l1 ¼ ðhp=2þ tÞ3 � h3p=8 (Ref. [11]).

vpe‘(x,y) (or vdi(x,y)) is the generalized location function

vpe‘ðx; yÞ ¼
1, ðx; yÞ � Xpe‘

0, elsewhere

�
: ð6Þ

For the sake of analysis, it can be assumed that all

piezoelectric patches have the identical properties, viz.

Epe1
= . . . = Eper

= Epe, mpe1 = . . . = mper = mpe.
In general, the equilibrium equations of a structure

induced by the applied electric field (Ref. [12]) can be

written as

oNx

ox
þ oNxy

oy
¼ q̂hðx; yÞ o

2u
ot2

oNxy

ox
þ oNy

oy
¼ q̂hðx; yÞ o

2m
ot2

o
2Mx

ox2
þ 2

o
2Mxy

oxoy
þ o

2My

oy2
¼ q̂hðx; yÞ o

2w
ot2

9>>>>>>>>=
>>>>>>>>;
, ð7Þ

where q̂ is the mass per unit volume resulting from the

material properties of the plate (qp) and piezoelectric
patch (qpe), and q̂ ¼ qp þ qpevpeðx,yÞ. Substituting Eqs.

(4) and (5) into (7) yields

D1
o2u
ox2 þ ðD2 þ D3Þ o2m

ox oy þ D2
o2u
oy2 ¼ q̂hðx; yÞ o2u

ot2

D2
o2m
ox2 þ ðD1 þ D3Þ o2u

ox oy þ D1
o2m
oy2 ¼ q̂hðx; yÞ o2m

ot2

D4
o4w
ox4 þ 2 o4w

ox2oy2 þ o4w
oy4

� �
¼ f ðx; y; tÞ � q̂hðx; yÞ o2w

ot2

9>>>=
>>>;
,

ð8a–cÞ

where f(x,y, t) is the distributed transverse loading,

D1 ¼ Ephðx,yÞ
1�m2p

þ
Pr
‘¼1

2Epet
1�m2pe

vpe‘ðx; yÞ
� �

,

D2 ¼ Ephðx,yÞ
2ð1þmpÞ þ

Pr
‘¼1

Epet
ð1þmpeÞ � vpe‘ðx; yÞ

� �
,

D3 ¼ Epmphðx,yÞ
1�m2p

þ
Pr
‘¼1

2Epempet
1�m2pe

vpe‘ðx; yÞ
� �

,

D4 ¼ Ephðx,yÞ3
12ð1�m2pÞ

þ
Pr
‘¼1

2Epel1
3ð1�m2peÞ

vpe‘ðx; yÞ
� �

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð9Þ

The above development established the formulation

method which describes the displacement equations of

motion for extension and flexure of a damaged plate

under the action of an applied electric field and trans-

verse mechanical loading. According to Eqs. (8) and

(9), the effects of the piezoelectric patches and cracks

on deflections are introduced by the variations of the

density q̂ and coefficients (D1, . . . ,D4). Note that for
the case of the ‘‘bimorph’’ arrangement of the piezoelec-

tric materials, the deflections u and m are relatively small

compared with the deflection w [13]. To this end, the

solution of w is of great interest. It is clear that an exact
solution of Eq. (8c) is not available due to the variation

of coefficients q̂hðx,yÞ and D4. In such case, the parallel

formulation based on the Rayleigh–Ritz method is

developed.

In general, the existence of the piezoelectric material

and cracks may change the configuration of the struc-
ture to some extent. However, the continuity condition

of deflection must be satisfied in the interfaces between

the plate and piezoelectric patches in defective areas.

In light of mode superposition theory, the transverse

deflection w(x,y, t) can be formulated by

wðx,y,tÞ ¼
X
i

X
j

cijW ijðx,yÞgijðtÞ, ð10Þ

where gij(t) and Wij(x,y) are the ijth modal co-ordinate

and shape function, respectively. cij the coefficients to

be determined. Evidently, the effect of cracks on mode
shapes (or the deflection) is embodied by the coefficients

cij. The results of vibration analysis for a plate with

cracks have been reported by Li et al. [14]. In this sec-

tion, the analysis is extended to a piezoelectric compos-

ite plate with cracks. Using the Rayleigh–Ritz method,

cij can be obtained by seeking the minima of the energy

function

JðwÞ ¼ EU � ET , ð11aÞ
i.e.,

oJðW Þ
ocij

¼ oðEU � ET Þ
ocij

¼ 0, ð11bÞ

where EU and ET are respectively the strain energy func-

tion and kinetic energy function,

EU ¼
Z a

0

Z b

0

Ephðx,yÞ3

12ð1� m2pÞ
o
2W
ox2

þ o
2W
oy2

� �2
"

�2ð1� mpÞ
o2W
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� o
2W
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� o2W
oxoy

� �2
 !#
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þ
Xr
‘¼1
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Z ype‘2
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2Epel1vpe‘ðx,yÞ
3ð1� m2peÞ

o2W
ox2

þ o2W
oy2

� �2
"

�2ð1� mpeÞ
o
2W
ox2

� o
2W
oy2

� o
2W

oxoy
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dy dx ð12aÞ

ET ¼ x2

(
hp
2

Z a

0

Z b

0

qp 1� vdiðx,yÞ �
hdi
hp

� �
W 2dy dx

þ
Xr
‘¼1

Z xpe‘2

xpe‘1

Z ype‘2

ype‘1

tqpeW
2dy dx

)
ð12bÞ

In Eq. (12a), the first term on the right hand represents

the strain energy contributed by the cracked plate, while

the second term is contributed by the rigidity of the pie-

zoelectric materials. In Eq. (12b), the first term reflects

the effect of cracks, which is included by the loss of



Table 1

Geometric size and material properties of the specimen

Host plate

(aluminum)

Piezoelectric

layer (PZT)

Dimension (m) 0.15 · 0.1 0.15 · 0.1

Thickness (m) 2E-3 5E-4

Mass density (kg/m3) 2700 7650

Young�s modulus (Pa) 7.1E+10 6.45E+10

Poisson�s ratio 0.3 0.3

Piezoelectric constant (e31) (N/mV) – 1.032E+01

Loss factor 0.01 –

Table 2

The first four natural frequencies of the piezoelectric plate with cracks

Mode Status

Intact Damaged

Free–free (B.C.)

(1,1) 330.8 328.8

(2,0) 357.5 353.1

(2,1) 763.3 759.9

(0,2) 836.0 827.4

Simply-supported (B.C.)

(1,1) 160.5 158.8

(1,2) 355.7 354.6

(2,1) 651.3 647.2

(2,2) 908.3 904.4
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the kinetic energy. The last term describes the contribu-
tion of piezoelectric materials.
Fig. 2. Contours of displacement mode shapes for a free–free piezoelectric plate with and without cracks.
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Substituting Eq. (12a) and (12b) into Eq. (11b) yields

ð½K� � k2½M�Þ
c11

..

.

cmn

8><
>:

9>=
>; ¼ 0, ð13Þ

where k is the frequency parameter, [M] and [K] are

respectively the mass and stiffness matrices in intricate

expressions. Eq. (13) describes the vibration behavior

of the damaged piezoelectric plate, which can be used

to calculate coefficients cij for constructing the deflection

(or displacement mode shapes) of the structure. As a re-

sult, the strain mode shape, which describes the distribu-
tion of the in-plane strain components at the top or
Fig. 3. Contours of strain mode shapes for a free–fr
bottom surface of the plate according to the correspond-

ing natural vibration mode, can be obtained in view of

the strain–displacement relationship. For example, the

strain mode shapes in the x and y directions can be

derived

exxðx,yÞ ¼ �hðx,yÞ o
2W ðx,yÞ
ox2

,

eyyðx,yÞ ¼ �hðx,yÞ o
2W ðx,yÞ
oy2

, ð14Þ

and the total strain mode shape is accordingly defined as

eðx,yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2xxðx,yÞ þ e2yyðx,yÞ

q
: ð15Þ
ee piezoelectric plate with and without cracks.
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3. Numerical results and discussions

The formulation described in Section 2 is imple-

mented to analyze the natural frequencies and displace-

ment/strain mode shapes of a damaged aluminum plate

covered with a whole layer PZT. Dimensions and mate-
rial properties are tabulated in Table 1. Two cracks are

simulated by the defective areas Xd1 = [0.03 0.045] ·
[0.025 0.03] m2 and Xd2 = [0.09 0.095] · [0.06 0.075] m2

with a thickness reduction hd = 0.001 m.

Firstly, the first four natural frequencies of the struc-

ture with and without cracks are calculated and listed in

Table 2 for comparison. Two cases of boundary condi-

tions, i.e., the free–free and the simply-supported
boundary condition, are adopted for analysis. It can
Fig. 4. Contours of displacement mode shapes for a simply-
be found that a systematic decrease of natural frequen-

cies appears due to the existence of cracks, which is in

consistent with that reported in Ref. [9]. Although

changes in natural frequencies are small, it is an intuitive

parameter for health monitor of the piezoelectric com-

posite plate, and is easy to be obtained using vibration
test.

The effect of cracks on displacement mode shapes is

then investigated. Fig. 2(a)–(h) illustrate the contour

plot of the first four displacement mode shapes for the

intact and damaged piezoelectric plates with free–free

boundary condition. It can be found that no obvious

change is observed except for a slight deformation

occurring at nodal lines of modes (1,1) (Fig. 2(b)) and
(2,1) (Fig. 2(f)). Special attention is paid to the defective
supported piezoelectric plate with and without cracks.
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areas Xd1 and Xd2, in which the appearance of cracks

cannot lead to a significant change in displacement

modes. Apparently, the displacement mode is not a sen-

sitive parameter to defects.

However, things will be changed when strain mode

shapes are taken into account. The contours of the cor-
responding strain mode shapes are plotted in Fig. 3.

Comparing with the results obtained in Fig. 2 for dis-

placement modes, an evident variation of strain mode

shapes at Xd1 and Xd2 can be detected. Obviously, this

local feature makes it possible to identify the damage

locations in a piezoelectric composite plate using strain

mode shapes.

This deduction is further verified in Figs. 4 and 5,
which illustrate the displacement and strain mode
Fig. 5. Contours of strain mode shapes for a simply-sup
shapes for the same configuration with simply-supported

boundary condition. Similar to the results obtained for

the free–free one (Figs. 2 and 3), strain mode shapes

are verified as the more sensitive parameter to defects

than displacement mode shapes.
4. Conclusions

An analytical model is developed to conduct vibra-

tion analysis of a damaged piezoelectric composite plate

with different boundary conditions. Numerical results

show that the present model can effectively simulate

the dynamic characteristics of a damaged plate. The nat-
ural frequencies and displacement/strain mode shapes
ported piezoelectric plate with and without cracks.
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are predicted and compared between the intact and

damaged cases, leading to the following conclusions:

The cracks in a piezoelectric composite plate alter

modal characteristics of the structure to a different level.

The strain mode shape is the most sensitive parameter

comparing with the parameters of natural frequencies
and displacement mode shapes. This local behavior

can therefore be adopted to identify damage locations

in a piezoelectric composite plate. The method should

be useful to future damage detection in piezoelectric

composite plates.
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